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Abstract. It is shown that the stability of ideal quantum gases can be measured by means 
of the Riemann scalar curvature R of the parameter space. The components of the metric 
tensor were assumed to be the second moments of energy and the number of particle 
fluctuations. As a result, R is a function of the second and third moments of those quantities. 
For bosons R is positive and increases monotonically from zero at the classical limit to 
positive infinity in the condensation region. A system is less stable if R is bigger and vice 
versa. For fermions R is negative and this means that Fermi gases are more stable than 
the ideal Bose and ideal classical systems. 

1. introduction 

Geometrical methods have always played an important role in thermodynamics. They 
not only facilitate the analysis of systems in thermodynamics of equilibrium states, 
but also give a better understanding and deeper insight into the mathematical structure 
of the theory. Recently it has been shown that the empirical laws of phenomenological 
thermodynamics may be expressed in a mathematically rigorous and concise way if 
one uses the language of contact geometry. This approach to problems of equilibrium 
thermodynamics was originated by Hermann [ I ]  and developed in [2]. Another 
approach to the geometry of thermodynamics is based on the concept of the distance 
between thermodynamic states. On a purely phenomenological level, it was initiated 
by Weinhold [3] who introduced a sort of Riemannian metric into the space of 
thermodynamic parameters by means of a scalar product of some reference vectors, 
tangent to the manifold of thermodynamic states. Many authors later discussed the 
physical consequences which resulted from the Weinhold construction. 

Gilmore [4] proposed another definition of the metric tensor and argued that there 
was no natural measure of distance in thermodynamics but there was a natural measure 
of curvature. Ruppeiner [ 5 ]  included the theory of fluctuations in the axioms of 
thermodynamics and showed that this leads to a reasonable Riemannian metric on a 
manifold of equilibrium states. Elements of his metric tensor were represented by the 
second moments of fluctuations of some parameters. He also proposed to connect the 
Riemann curvature of the thermodynamic manifold with interparticle effective strength 
of interaction in the system. However, it turned out that the two metrics introduced 
by Weinhold and Ruppeiner are conformally equivalent [6,7]. 

A statistical approach to the metrisation problems in thermodynamics was initiated 
by Ingarden [8] who defined the metric tensor by means of the relative entropy. These 
ideas have been further developed in [9,10]. In our previous paper [ 113 we presented 
a unified statistical and phenomenological approach to the metrisation problem of a 
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space of thermodynamic parameters. We gave a general formula of transformations 
of the metric tensor under Legendre transformations. 

In the present paper we investigate the case of ideal Bose and Fermi gases of 
indistinguishable particles. It was known [9] that for an ideal classical gas the scalar 
curvature R is always zero. As we will see, this is not the case for ideal quantum 
gases. Although the interparticle interactions are absent (ideal gases), the effects of 
quantum statistics cause the behaviour of ideal quantum gases to be quite different 
from that of a classical ideal gas. In the quantum case there exist spatial correlations 
between various particles of the system. They originate from the symmetry properties 
of the wavefunctions for indistinguishable particles. The quantum effects, i.e. those 
spatial correlations, become quite significant at low temperatures and (or) for a high 
density of particles. 

2. Metric geometry of the parameter space 

Let us consider a quantum mechanical system described by an equilibrium density 
matrix p, 

p = z-'(p) exp(-P'F,) i = 1,2, . . . , r (2.1) 
(in all formulae we assume summation over repeated indices) which depends on r 
self-adjoint and linearly independent operators F1 , F2,  . . . , F, and on r classical real 
parameters P I ,  p2,  . , . , p'. Z ( p )  is the standard partition function or the normalisation 
factor, i.e. 

Z ( p )  = Tr exp(-p'F,). (2.2) 

(2.3) 
Physically, F, represent quantities which may fluctuate freely and the only constraints 
are those imposed by (2.3), which means that the numerical values of m, are fixed, if 
only p is fixed. On the other hand, the parameters p '  do not fluctuate and they 
characterise an environment (bath) surrounding our system. In such a way changes 
in the p', caused by changes of the state of the environment, generate changes of the 
density matrix p and numerical values of m,. In this sense (2.1) may be treated as an 
r-parameter family of density matrices. On the parameter space we may define a 
Riemannian structure by means of the following formula [9-111: 

Let us denote by m, the statistical mean values of the quantities represented by F,: 

m, = ( F , )  = Tr( pF,). 

d p '  dp'. (2.4) 

If the operators Fi commute the above formula takes the form 

(2.5) 

The above formula may be derived [8] from the relative information (relative entropy). 
Let us consider two close statistical states p = p ( p )  and CJ = p ( p  +dp) .  According to 
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[8] we define the information distance Z (  p 1 a) between these two states (information 
gain) as 

(2.6) 

Next we expand (2.6) into a power series in the neighbourhood of p up the second-order 
terms in dp'. In order to do this one has to use the well known formula for the 
parameter differentiation of an exponential operator 

I( p I U )  = Tr[ p(1n p -In a)] a 0. 

One can easily show that 

while for p given by (2.1) we obtain 

--=l0'dA 1 a2z Tr(pexp(Ap'Ff ) - exp( -Ap'Ff )~ ) .  a In p (2.9) 
2 ap' apJ ap a P  

This may be further written in the form 

Finally the local square distance in the parameter space is given by 

(2.10) 

(2.11) 

If the operators F, commute this formula is the same as (2.4). In the opposite case, 
the formula (2.11) differs from (2.4). Because the metric tensor in (2.11) is expressed 
in terms of the second derivatives of the potential function In Z ( p ) ,  this definition of 
the metric tensor g ,  = a2 In Zlap'apJ seems better. 

Statistically the components of the metric tensor gi, can be expressed as 

g ,  = dA Tr[p exp(AP'F,)(Fj - ( E , ) )  exp(-Ap'F')(F, -(Z3))]. (2.12) 

If i = j  we have second moments of Fi. In the case i # j  we get the covariances of 6 
and F,. In the case of commuting operators 

gij = ( (F i - (F i ) ) (F , - (F j ) ) )*  (2.13) 

ld 

3. The geometrical structure of the parameter space for the systems described by the 
grand canonical distribution 

The simplest thermodynamical systems are those with two degrees of freedom, i.e. 
with r = 2. To each degree of freedom there corresponds a stochastic quantity (here 
represented by E )  which may fluctuate and is conjugate to the statistical temperature 
(here p i )  which characterises the external conditions. If one chooses for F, and F2 
the Hamiltonian operator fi and the operator of the number of particles fi, respectively, 



470 H Janyszek and R Mrugaia 

then, by referring to phenomenological thermodynamics, we gather that p' = p = (kT)-' 
and p2 = y = -p(kT)- ' ,  where k is the Boltzmann constant, T is the absolute tem- 
perature and p is the chemical potential. The corresponding density matrix 

p = z-'(P, y)  exp(-pA - yfi)  (3.1) 

is called the grand canonical (or T - p )  distribution. The partition function Z(p, y) is 
formally equal to 

Z(p, y )  = Tr exp( - p f i  - yf i )  (3.2) 

but physically it may be expressed by means of the Kramers potential q, q = k In Z, 
which in turn is equal to PV/  T [ 12,131, where P and V are the pressure and volume 
of the system. Thus we have 

Z = exp( q /  k) = exp( PV/  kT) = exp( CY V) CY = P / k T  (3.3) 

The dependence of Z on P and y means therefore that P is a function of ,L3 and y. 
Due to (3.3) we have 

p=exp(-aV-pPA-yfi)  (3.4) 

d In p = - V d a  - f i  d p  - fi dy. 

and 

(3.5) 

We have to notice, however, that despite the symmetric appearancepf V ,  H and N 
in (3.5), their roles are conceptually different. The operators and N represent here 
stochastic quantities whereas the volume Vis a fixed classical quantity (not an operator). 
By means of (3.5) we go over to phenomenological thermodynamics by defining the 
1-form 9, 

O:=(-d In p ) =  V d a  + U d p +  N d y  (3.6) 

where U = (H) and N are the mean values of the energy and the number of particles. 
For a spatially homogeneous system, it is convenient to take 

e ' = e / V = d a + u d p + n d y  (3.7) 

where U = U /  V and n = N /  V are densities of energy and particles. It is easy to see 
that (d In p )  is equal to zero if the density matrix p is normalised. The normalisation 
of p thermodynamically means that a is a function of p and y. 

If one treated (temporarily) a, p, y, U and n as independent variables then the 
1-form 8' would define a contact structure on five-dimensional thermodynamical phase 
space [6] with local coordinates a, P, y, U and n. In our case the states which can be 
realised by a given thermodynamical system constitute only a two-dimensional sub- 
manifold X, called the thermodynamic surface in the thermodynamic phase space. 
According to the first and second laws of thermodynamics, this surface is given by the 
following exterior differential equation: 

e' = 0. (3.8) 

Q = a(P, Y) U = -&lap n = -aa/ay. (3.9) 

One of the possible solutions of (3.8) has the form 
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We have mentioned already, that p is normalised, i.e. Tr p = 1. Due to (3.7) and (3.9), 
a is called a potential function with respect to p and y. In the following we will 
identify the space of parameters p and y with the thermodynamic surface given by 
(3.9). Consequently, X becomes a Riemannian manifold with the metric tensor (2.10). 

If one now notices that due to (3.3) 

a2 
= v- i, j = l , 2  

a' In ~ ( p )  
ap '  apJ  a p t  apJ  = (3.10) 

then it is clear that, in order to calculate the components of the metric tensor g,, we 
can use the apparatus of either statistical or phenomenological thermodynamics. Of 
course, the physical interpretation of the components of g,  is much deeper if we use 
both methods. Due to (2.12) in the case of commuting operators and (3.2), we have 

(3.11) 

The statistical interpretation of the components of g is, therefore, very nice and 
appealing. They simply describe the square correlations of the original stochastic 
variables. So, they characterise the fluctuations of the quantities which correspond to 
these variables. On the other hand, the phenomenological interpretation of g,  may 
be inferred from (3.9) and (3.10) or from 

because -a In z(p)/ap' = mi .  Thus we have 

(3.12) 

(3.13) 

where xT = - V-'(aV/aP),,, is the isothermal compressibility, and the last equality 
for g2, may be found in [13, section 4.61. 

4. Geometrical structure in the case of ideal Bose and Fermi gases 

We will now apply the general formalism of the Riemannian geometry developed in 
the two preceding sections to ideal quantum gases. From (3.9) we see that all the 
thermodynamic information about a system is contained in the relation a = a(p, y ) .  
According to (3.10) the knowledge of this relation is also sufficient to evaluate all 
geometrical quantities which we will need in the following. Unfortunately, this relation, 
called the fundamental relation, is known only in a few special cases. 
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The grand canonical distribution applied to an ideal non-relativistic gas of spinless 
bosons of mass m leads to the following two equations [12,13]: 

where A = h / ( 2 ~ m k T ) ’ / ~  is the mean thermal wavelength of the particle, h is the Planck 
constant and 

r ( f )  denotes here the Gamma function and we have used the standard symbol for the 
fugacity 

(4.4) 
In the case of arbitrary integer spin the formulae (4.1) and (4.2) must be multiplied 
by the degree of degeneracy. These formulae are crucial for our further considerations. 
All details which lead to them may be found, e.g., in [12, 131 and in other textbooks 
of statistical physics. 

For bosons, p s 0, and therefore 7 varies from 0 to 1 .  We must stress, however, 
that although the relation (4.1) is in principle exact, the relation (4.2) holds only for 
the high-temperature region in which the number of particles in the ground state is 
negligible. It means that those values of temperature for which we observe the 
Bose-Einstein condensation are excluded from our considerations. 

It may be easily checked that for 7 satisfying 0 < 7 < 1,  gr(  7) may be expanded in 
powers of 7, and one gets 

77 = e - ~  = e ~ / k T  

which, in the interesting range of 7, converges for I > 1 .  We will also need gl(  7) for 
1 = and I = -5. In these cases the sequence Er( 7) converges for 0 < 7 < 1 but diverges 
for 7 = 1 .  From (4.3) or (4.5) one gets an important relation 

which holds for each I .  
According to (4.1) and (4.2) the components of the metric tensor are as follows: 

The determinant of g expressed through the function g r ( 7 )  has the form 

(4.8) 
We see that this metric degenerates for 77 = 0. This causes no trouble since the states 
with 7 = 0 are unphysical. If we set gr(  7) = 7 then we obtain the classical case. For 

det g = -6 v2P-2[5&/2( 7)g1/2( 7)) - 3 d d  7 )I. 
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small but not negligible values of 77 (the classical or high-temperature limit) one may 
assume g l ( 7 )  = 7 and then det g =$A-6V2/3-272 is positive. On the other hand, det g 
tends to positive infinity if 7 + 1 as &(l) diverges for 16 1. 

The Christoffel symbols [14] 

reduce in our case to 

1 a g ,  1 a 3 \ n z  
'Ik 2 a p k  2 a p i  a p j  a p k '  

r .  =--=- (4.10) 

In turn, the Riemann curvature tensor 

reduces to 
gmn(rmi i rn jk  -rmikrnlr) (4.12) 

because the first bracket in (4.11) disappears due to the special choice of the metric 
tensor g,k = a2 In z / a p  iap '. 

We consider here systems with two thermodynamic degrees of freedom and therefore 
the dimension of the thermodynamical surface Z (given by 0 = 0 or by (3.9)) is equal 
to 2. On the two-dimensional Riemann manifold there is only one non-vanishing 
component of ROkl,  namely R1212.  Thus the scalar curvature 

R = gmnRLim (4.13) 
is given by a very simple formula [14] 

(4.14) 

It is interesting to note that all components of r i j k ,  Rijkl and R itself are expressed 
through the second and third derivatives of In Z. Because of the special form of the 
metric tensor the formula for R may be presented as 

(4.15) 

From the formulae below, one can also see that, from the statistical point of view, all 
thesf quantities are expressed through the second and third moments and correlations 
of H and fi. In fact, due to (3.1), (3.2) and (4.1), we have 

a3 In Z 

a p  
-- - -((A -(A))3)= - y A - 3 V p - 3 g 5 / 4 ( 7 )  
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This procedure may not be continued because the fourth derivatives of In 2 cannot 
be expressed through the fourth moments. In fact, they can be expressed through the 
moments of fourth and lower order and are fourth cumulants. Finally, from (4.7), 
(4.8), (4.15) and (4.16) we get 

For an ideal Fermi gas of particles of spin s the whole procedure may be repeated 
if one replaces Er(  7) by f;( 77) in all formulae, where 

For 7 < 1 ,  f;( 77) may be also expanded in powers of 77 with the result 

(4.18) 

(4.19) 

For fermions, the chemical potential p may be either negative or positive, --CO < p <a), 
and therefore 

O < T < < .  (4.20) 

As a result, the power expansion (4.19) does not hold for the whole range of 7. For 
77 > 1 one has to take the exact formula (4.18) or use another expansion in powers of 
(In v)-' [ 121. In this paper, however, we are confined only to 0 < 77 < 1 and consequently 
(4.19) is quite satisfactory. As we said, the formula (4.17) for scalar curvature holds 
also for fermions, but we will replace g,( 7) by fr( 77): 

The counterpart of (4.2) for fermions is more reliable than (4.2) itself for bosons. 
Neglecting the ground state for fermions is quite unimportant as the eigenvalues of 
the particle number operator in this state are only 0 and 1 .  

The formula (4.17) for the scalar curvature R is very complicated. As a matter of 
fact, we are not even able to say whether R is positive or negative for various values 
of p and y (or A and 77). It is immediately seen that, in the classical case, g r (  7) =A( 77) = 
77, the scalar curvature is 0. This result agrees with the earlier calculation performed 
for the ideal classical gas in [9]. 

In table 1 we have collected some numerical values of R which were computed 
with a very high accuracy. For bosons R is given in units of 20A3V-', while for 
fermions it is given in units of 20A3 V-'(2s + l ) - ' .  Computations were performed for 
l /kT = constant, i.e. for an isotherm. This is sufficient because at present we are 
interested only in a quantative behaviour of R for the ideal Bose (Fermi) gas. All 
isotherms look qualitatively the same. 

From table 1 we see that for bosons R is always positive and monotonically increases 
as 77 tends to 1 .  The scalar curvature R diverges to positive infinity. For fermions R 
is negative in the interval (0, 1 ) .  
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Table 1. Scalar curvature R for chosen values of the fugacity 7 for bosons (in units of 
ZOA'V-I) and fermions (in units of 20A3 V-'(2s + l ) - ' ) .  

Scalar curvature R 

t7 bosons 

0.100 0.4539 x lo-' 
0.300 0.4852 x IO-' 
0.500 0.5337 x IO-' 
0.700 0.6245 x lo-' 
0.900 0.9187 x lo-' 
0.910 0.9563 x lo-' 
0.920 0.1001 
0.930 0.1054 
0.940 0.1121 
0.950 0.1207 
0.960 0.1323 
0.970 0.1493 
0.980 0.1778. 
0.990 0.2423 

fermions 

-0.7334 x lo-' 
-0.1805 
-0.4916 
-0.2226 x 10' 
-0.6608 x lo4 
-0.2909 X IO4 
-0.4131 X lo3 
- 0 . 1 5 7 5 ~  lo3 
-0.8268 x lo2 
-0.5095 x lo2 
-0.3459 x 10' 
-0.2505 x lo2 
-0.1909 X lo2 
-0.1493 x lo2 

The parameter V appearing in all formulae is not essential. It may be omitted by 
redefining the metric tensor as 

(4.22) 

So the curvature R does not depend on the volume of the system and is a function of 
second and third moments per unit volume. 

5. Concluding remarks 

It is experimentally well established that fluctuations in single-phase systems are 
thermodynamically negligible and, therefore, such systems are relatively stable. Fluctu- 
ations become very important in multiphase systems, especially in the vicinity of the 
critical points. As a result, in the closest vicinity of the critical points, systems become 
extremely unstable. The scalar curvature R depends on the second and third moments 
of fluctuations and, therefore, we propose to interpret R as a measure of global 
fluctuations in the system caused by interactions (in our case quasi-interactions). In 
this sense R may be treated as a measure of the stability of the system: the bigger R, 
the less stable is the system. In the classical limit (small 7) the bosonic gas is far away 
from the region in which the Bose-Einstein condensation occurs [12,13] and is 
relatively stable. As 7 + 1 the system is closer to the condensation region and is less 
stable. This condensation may be treated formally as a sort of a phase transition, 
although it is conceptually different from the well known gas-liquid or liquid-solid 
transition. A divergence of R to positive infinity for 7 + 1 corresponds to this experi- 
mentally confirmed condensation. 

Traditionally, departure from the equilibrium mean values (fluctuations) of some 
quantities are described in terms of the second moments, i.e. by components of the 
metric tensor in our geometrical formalism. Phenomenologically, this is equivalent to 
taking the second derivatives of thermodynamic functions. In this paper, we proposed 
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to also take into account the third moments which, in a natural way, enter the expression 
for the scalar curvature R. Phenomenologically, this means taking the third derivatives 
of thermodynamic functions, which is not the case in the standard thermodynamics. 

For the ideal Bose gases the fluctuations are bigger (positive spatial correlations 
due to the statistical effect of attraction of particles) than those for the classical ideal 
gas and hence R is positive. 

On the contrary, for ideal Fermi gases the fluctuations are smaller, (negative spatial 
correlations, due to repulsion of particles) than those for the classical ideal gas and 
so R is negative. If the stability of the ideal classical gas may be called normal, then 
that of bosons is ultranormal and that of fermions infranormal in agreement with the 
Pauli principle. 

It must be stressed, however, that this concerns only that part of fluctuations which 
results from the interparticle interactions (for classical gases) and from the quantum 
effects for ideal quantum gases. 

It seems that for real Bose and Fermi systems similar conclusions may be true. 
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